Алгебра phys 1 весна 2016

Материал из CSC Wiki
Перейти к:навигация, поиск

2  Линейная алгебра

2.1  Матрицы, базисы, координаты

2.1.1  Пространства матриц, столбцов, строк
  • Пространство матриц . Пространство столбцов: . Пространство строк: .
  • Матричные единицы: . Стандартный базис пространства : .
  • Стандартный базис пространства : . Стандартный базис пространства : .
  • Умножение матриц: . Внешняя ассоциативность умножения матриц. Кольцо . Группа .
  • Строки матрицы: . Столбцы матрицы: . Утверждение: и .
  • След матрицы: . Утверждение: пусть и ; тогда .
  • Транспонирование матрицы: . Утверждение: пусть и ; тогда .
2.1.2  Столбцы координат векторов и матрицы гомоморфизмов
  • Упорядоченные базисы. Столбец координат вектора. Утверждение: . Изоморфизм векторных пространств .
  • Матрица гомоморфизма: . Утверждение: и . Утверждение: .
  • Изоморфизм векторных пространств . Изоморфизм колец и векторных пространств .
2.1.3  Преобразования координат при замене базиса
  • Матрица замены координат: . Матрица замены базиса: . Утверждение: .
  • Преобразование базиса: . Преобразование координат вектора: . Покомпонентная запись: .
  • Преобразование координат гомоморфизма: . Покомпонентная запись (если — эндоморфизм): .
2.1.4  Элементарные матрицы и приведение к ступенчатому виду
  • Элементарные трансвекции и псевдоотражения .
  • Элементарные преобразования над строками первого типа и второго типа .
  • Элементарные преобразования над столбцами первого типа и второго типа .
  • Ступенчатые по строкам и ступенчатые по столбцам матрицы. Теорема о приведении матрицы к ступенчатому виду.

    Теорема о приведении матрицы к ступенчатому виду. Пусть — поле, и ; тогда
    (1) существуют такие и элементарные матрицы размера над полем , что — ступенчатая матрица;
    (2) число ненулевых строк ступенчатой матрицы из пункта (1) равно (и, значит, не зависит от матриц ).

  • Нахождение базиса подпространства, порожденного конечным множеством, при помощи теоремы о приведении матрицы к ступенчатому виду.

2.2  Линейные операторы (часть 1)

2.2.1  Ядро и образ линейного оператора
  • Отступление о свойствах базиса. Утверждение: . Утверждение: пусть , ; тогда .
  • Ядро линейного оператора: . Образ линейного оператора: . Лемма о слоях гомоморфизма и следствие из нее.

    Лемма о слоях гомоморфизма. Пусть — поле, — вект. пр. над , , , ; тогда .

    Следствие из леммы о слоях гомоморфизма. Пусть — поле, — вект. пр. над , ; тогда .

  • Теорема о размерностях ядра и образа линейного оператора. Пусть — поле, — векторные пространства над полем ,
    и ; тогда выполнено .
  • Принцип Дирихле для линейных операторов. Пусть — поле, — векторные пространства над полем и ;
    тогда выполнено .
2.2.2  Ранг линейного оператора
  • Ранг линейного оператора: . Ранг матрицы (ранг по столбцам): . Утверждение: .
  • Утверждение: . Утверждение: и .
  • Теорема о свойствах ранга. Пусть — поле, и ; тогда
    (1) для любых матриц и выполнено ;
    (2) существуют такие матрицы и , что ;
    (3) и (то есть ранг по столбцам равен рангу по строкам).
2.2.3  Системы линейных уравнений
  • Матричная запись систем. Однородные системы. Утверждение: пусть ; тогда .
  • Теорема Кронекера–Капелли. Пусть — поле, , и ; тогда .
  • Метод Гаусса. Главные и свободные неизвестные. Фундаментальная система решений — базис пространства .

2.3  Конструкции над векторными пространствами

2.3.1  Факторпространства и прямая сумма векторных пространств
  • Факторпространство: . Утверждение: пусть , — базис в , — базис в , ; тогда — базис в .
  • Теорема о гомоморфизме. Пусть — поле, — векторные пространства над полем и ; тогда .
  • Прямая сумма векторных пространств: . Базис прямой суммы. Теорема о прямой сумме. Внутренняя прямая сумма подпространств.

    Теорема о прямой сумме. Пусть — поле, — векторное пространство над полем и ;
    обозначим через отображение ; тогда
    (1) , и ;
    (2) ;
    (3) если , то ;
    (4) если , то (это формула Грассмана).

  • Подпространство, инвариантное относительно эндоморфизма: . Матрица эндоморфизма, имеющего инвариантное подпространство.
  • Матрица эндоморфизма в случае существования разложения пространства во внутреннюю прямую сумму инвариантных подпространств.
2.3.2  Двойственное пространство
  • Двойственное пространство: . Двойственный базис: . Утверждение: . Столбец .
  • Строка координат ковектора. Утверждение: . Преобразования при замене базиса: , и .
  • Отождествление пространств и в случае конечномерного пространства при помощи изоморфизма .
  • Сводная таблица о координатах. (В таблице — поле, — векторное пространство над полем , и .)

Инвариантный объектКоординаты
относительно базиса
Преобразование координат
при замене базиса
Пример использования
в геометрии и физике
вектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
скорость в точке
гладкого пути
на многообразии
ковектор
элемент пространства
(тензор типа над )

(это изоморфизм
векторных пространств)
матричная запись:
покомпонентная запись:
преобразование базиса:
дифференциал в точке
гладкой функции (скалярного поля)
на многообразии
эндоморфизм
элемент пространства
(тензор типа над )

(это изоморфизм колец
и векторных пространств)
матричная запись:
покомпонентная запись:
дифференциал в неподвижной точке
гладкого отображения,
действующего из многообразия в себя

2.4  Полилинейные отображения, формы объема, определитель

2.4.1  Отступление о симметрических группах
  • Симметрическая группа: . Запись перестановки в виде последовательности значений. Цикловая запись перестановок.
  • Утверждение: . Утверждение: .
  • Транспозиции и фундаментальные транспозиции . Число циклов .
  • Лемма об умножении на транспозицию. Пусть , , и ; тогда
    (1) если числа и принадлежат одному циклу в перестановке , то ;
    (2) если числа и принадлежат разным циклам в перестановке , то .
  • Теорема о разложении перестановки в произведение транспозиций. Пусть и ; обозначим через число ; тогда
    (1) существуют такие транспозиции , что ;
    (2) для любых из существования таких транспозиций , что , следует, что и .
  • Знак перестановки: . Утверждение: — гомоморфизм групп. Знакопеременная группа: .
2.4.2  Полилинейные отображения и формы объема
  • Пространства полилинейных отображений , и полилинейных форм , .
  • Пространства билинейных отображений , и билинейных форм , . Примеры полилинейных форм.
  • Пространство симметричных полилинейных форм . Пространство антисимметричных полилинейных форм .
  • Лемма об антисимметричных формах. Пусть — поле, — векторное пространство над полем , и ; тогда
    следующие условия эквивалентны (если , то исключаются импликации (2)(1) и (3)(1)):
    (1) ;
    (2) для любых и таких , что — транспозиция, выполнено ;
    (3) для любых и выполнено .
  • Пространство форм объема (). Форма объема, связанная с базисом: .
  • Теорема о формах объема. Пусть — поле, — векторное пространство над , ; обозначим через число ; тогда
    (1) для любых и выполнено ;
    (2) для любых множество — базис пространства ;
    (3) для любых и выполнено .
2.4.3  Определитель линейного оператора
  • Определитель линейного оператора: , где . Корректность определения.
  • Теорема о главных свойствах определителя. Пусть — поле, — векторное пространство над полем и ; тогда
    (1) (напоминание: );
    (2) для любых выполнено
    (и, значит, отображение определено корректно и является гомоморфизмом групп).
  • Определитель матрицы: . Утверждение: пусть ; тогда .
  • Лемма об определителе оператора и определителе матрицы. Пусть — поле, — векторное пространство над полем , ,
    и ; обозначим через число ; тогда .
  • Утверждение: и определитель блочно-треугольной матрицы равен произведению определителей диагональных блоков.
  • Специальные линейные группы: и .
2.4.4  Миноры матрицы и присоединенная матрица
  • Миноры. Дополнительные миноры. Присоединенная матрица: дополнительный минор матрицы в позиции .
  • Теорема о присоединенной матрице. Пусть — поле, и ; тогда
    (1) и (в частности,
    при имеем и при имеем ;
    это формулы разложения определителя матрицы по -й строке матрицы и по -му столбцу матрицы соответственно);
    (2) и, если , то .
  • Правило Крамера. Пусть — поле, , , и ; тогда .
  • Теорема о базисном миноре. Пусть — поле, и ; тогда равен максимальному среди всех таких чисел
    , что в матрице существует такая подматрица размера , что (то есть ).

2.5  Линейные операторы (часть 2)

2.5.1  Многочлены от операторов
  • Многочлен от оператора: . Эвалюация — гомоморфизм колец и векторных пространств.
  • Кольцо, порожденное оператором: — коммутативное подкольцо и подпространство в .
  • Минимальный многочлен оператора: , приведен, ; .
  • Утверждение: пусть и ; тогда и, если и делит , то .
  • Теорема о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
    и ; тогда .
  • Следствие из теоремы о разложении в прямую сумму ядер. Пусть — поле, — векторное пространство над полем , ,
    , и , где , и попарно взаимно просты; тогда .
  • Проектор (идемпотент): . Нильпотентный оператор: .
2.5.2  Спектр оператора и характеристический многочлен оператора
  • Спектр оператора: ; если , то .
  • Характеристический многочлен матрицы: . Характеристический многочлен оператора: . Корректность определения.
  • Утверждение: . Утверждение: (и, значит, ).
  • Теорема Гамильтона–Кэли. Пусть — поле, — векторное пространство над полем , и ; тогда .
  • Две кратности: — кратность как корня многочлена (алгебраическая кратность) и — кратность как корня многочлена .
  • Лемма о минимальном и характеристическом многочленах. Пусть — поле, — вект. пр. над , , ; тогда
    (1) многочлен делит многочлен (и, значит, );
    (2) ;
    (3) если — нильпотентный оператор, то .
2.5.3  Собственные и корневые подпространства оператора
  • Обобщенные собственные подпространства: . Корневые подпространства: .
  • Цепь -инвариантных подпространств: ; вывод: .
  • Относительные геометрические кратности: и . Утверждение: .
  • Теорема о диагонализуемых операторах. Пусть — поле, — векторное пространство над полем , и ;
    тогда следующие условия эквивалентны:
    (1) существует такой упорядоченный базис , что — диагональная матрица;
    (2) (то есть раскладывается без кратностей в произведение многочленов степени в кольце );
    (3) (это разложение пространства в прямую сумму собственных подпространств оператора );
    (3') .
  • Лемма об обобщенных собственных подпространствах. Пусть — поле, — вект. пр. над , , , ; тогда
    (1) для любых выполнено ;
    (2) и .
  • Теорема о разложении в прямую сумму корневых подпространств. Пусть — поле, — векторное пространство над полем ,
    , и многочлен раскладывается в произведение многочленов степени в кольце (если , то
    это условие выполнено для любого оператора в силу алгебраической замкнутости поля ); тогда
    (1) (это разложение пространства в прямую сумму корневых подпространств оператора );
    (2) для любых , обозначая через оператор , имеем следующий факт: для любых
    выполнено , а также — нильпотентный оператор и .

2.6  Линейные операторы (часть 3)

2.6.1  Относительные базисы
  • Независимое подмножество в относительно : . Порождающее подмножество в относительно : .
  • Базис в относительно : одновременно независимое и порождающее подмножество в относительно . Три леммы-упражнения.

    Лемма 1 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда следующие условия эквивалентны:
    (1) — базис в относительно ;
    (1') — независимое подмножество в и ;
    (2) — максимальное независимое подмножество в относительно ;
    (3) — минимальное порождающее подмножество в относительно .

    Лемма 2 об относительных базисах. Пусть — поле, — вект. пр. над , , ; тогда
    (1) любое независимое подмножество в относительно можно дополнить до базиса в относительно ;
    (2) из любого конечного порождающего подмножества в относительно можно выделить базис в относительно .

    Лемма 3 об относительных базисах. Пусть — поле, — вект. пр. над , , — базис в относительно , — базис в
    относительно ; тогда — базис в относительно .

  • Теорема об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем , и ;
    обозначим через , , пространства , , соответственно; пусть — независимое подмножество в
    относительно ; тогда — биекция и — независимое подмножество в относительно .
  • Следствие из теоремы об относительно независимых подмножествах. Пусть — поле, — векторное пространство над полем ,
    , и ; тогда .
2.6.2  Жорданова нормальная форма оператора
  • Жордановы клетки: и . Прямая сумма матриц: .
  • Диаграммы Юнга. Жорданов блок: , где числа суть длины строк диаграммы Юнга .
  • Диаграмма Юнга : высоты столбцов диаграммы суть относительные геометрические кратности .
  • Теорема о жордановой нормальной форме нильпотентного оператора. Пусть — поле, — векторное пространство над , ,
    , — нильпотентный оператор; тогда существует такой упорядоченный базис , что .
  • Теорема о жордановой нормальной форме. Пусть — поле, — векторное пространство над полем , ,
    и многочлен раскладывается в произведение многочленов степени в кольце (если , то это условие выполнено для
    любого оператора в силу алгебраической замкнутости поля ); тогда существует такой упорядоченный базис , что
    (то есть матрица раскладывается в прямую сумму жордановых блоков).
2.6.3  Примеры использования жордановой нормальной формы в анализе и физике
  • Утверждение: пусть и ; тогда . Вычисление многочленов и рядов от жордановых клеток.
  • Экспонента от оператора: . Пример вычисления экспоненты: . Теорема о свойствах экспоненты.

    Теорема о свойствах экспоненты. Пусть — векторное пространство над полем и ; тогда
    (1) для любых таких , что , выполнено ;
    (2) для любых выполнено , а также .

  • Однородная система линейных дифференциальных уравнений: (, ). Решение: ().
  • Сведе́ние уравнения к системе уравнений . Фундаментальная система решений.
  • Стационарное ур.-е Шрёдингера для частицы в одномерной потенциальной яме с бесконечными стенками: и .
  • Выводы из ур.-я Шрёдингера для частицы в потенциальной яме: — плотность вероятности, — энергия.

2.7  Алгебры

2.7.1  Определения и конструкции, связанные с алгебрами
  • -Алгебра — векторное пространство над с билинейным умножением — кольцо (в широком смысле слова) с умножением на скаляры из .
  • Гомоморфизм алгебр — гомоморфизм колец и векторных пространств. Подалгебра (идеал) алгебры — подкольцо (идеал) и подпространство.
  • Примеры алгебр: -алгебры , , , , , ; -алгебры , с векторным умножением, .
  • Структурные константы алгебры: . Утверждение: массив определяет умножение в -алгебре .
  • Теорема Кэли для алгебр. Пусть — поле и — ассоциативная -алгебра с ; обозначим через векторное пространство над
    полем , получающееся из -алгебры при «забывании» умножения в этой алгебре; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор на векторном
    пространстве (то есть элемент -алгебры );
    (2) обозначая через отображение , имеем следующий факт: — инъективный гомоморфизм алгебр с .
  • Алгебра с делением: . Утверждение: конечномерная алгебра без делителей нуля — алгебра с делением.
2.7.2  Полилинейные формы и многочлены от свободных переменных
  • Тензорное произведение полилинейных форм: . Свойства операции .
  • Утверждение: пусть и ; тогда множество — базис пространства .
  • Алгебра полилинейных форм (ковариантных тензоров): . Утверждение: — ассоциативная -алгебра с .
  • Моном (слово) от свободных переменных степени : (). Моноид слов .
  • Пространство однородных многочленов степени : . Алгебра многочленов: .
  • Теорема об алгебре полилинейных форм. Пусть — поле, — вект. пр. над , , ; обозначим через число ;
    тогда отображение, продолжающее по линейности частичное отображение , — изоморфизм алгебр с .
2.7.3  Тело кватернионов
  • -Алгебра кватернионов: , где и , , .
  • Скалярная (вещественная) и векторная (мнимая) части кватерниона: и .
  • Сопряжение: . Модуль: . Чистые кватерн.-ы: .
  • Теорема о свойствах кватернионов.
    (1) Для любых и выполнено .
    (2) Для любых выполнено и, если , то (и, значит, — тело).
    (3) Для любых выполнено (и, значит, отображение — антиавтоморфизм алгебры ).
    (4) Для любых выполнено (и, значит, отображение — гомоморфизм групп).
  • Трехмерная сфера: . Утверждение: пусть ; тогда и .
  • Теорема о представлении кватернионов комплексными матрицами. Отображение — инъективный
    гомоморфизм алгебр с , и его образ есть (и, значит, ).
2.7.4  Алгебры Ли (основные определения и примеры)
  • Условия на умножение в алгебре Ли: билинейность, антисимметричность (), тождество Якоби ().
  • Коммутатор в ассоциативной алгебре : . Алгебра : пространство с операцией . Утверждение: — алгебра Ли.
  • Примеры алгебр Ли: , , с векторным умножением ( в алгебре Ли ).
  • Теорема Кэли для алгебр Ли. Пусть — поле и -алгебра Ли; тогда
    (1) для любых , обозначая через отображение , имеем следующий факт: — линейный оператор на векторном
    пространстве (то есть элемент алгебры Ли );
    (2) обозначая через отображение , имеем следующий факт: — гомоморфизм алгебр Ли.
  • Алгебра дифференцирований алгебры : — подалгебра алгебры Ли .
  • Теорема об алгебре Ли векторных полей. Пусть и — открытое подмножество в ; обозначим через и
    алгебру и векторное пространство соответственно; тогда
    (1) для любых , обозначая через отображение (здесь ), имеем следующий
    факт: — дифференцирование алгебры (то есть элемент алгебры Ли );
    (2) обозначая через отображение , имеем следующий факт: — инъективный линейный оператор,
    а также — подалгебра алгебры Ли ;
    (3) определим на векторном пространстве бинарную операцию так, что для любых выполнено
    (из пункта (2) следует, что это условие корректно определяет операцию ); тогда для любых
    выполнено (здесь ), а также — алгебра Ли относительно операции .